Radial Basis Function approximation methods with extended precision floating point arithmetic
نویسنده
چکیده
Radial Basis Function (RBF) methods that employ infinitely differentiable basis functions featuring a shape parameter are theoretically spectrally accurate methods for scattered data interpolation and for solving Partial Differential Equations. It is also theoretically known that RBF methods are most accurate when the linear systems associated with the methods are extremely ill-conditioned. This often prevents the RBF methods from realizing spectral accuracy in applications. In this work we examine how extended precision floating point arithmetic can be used to improve the accuracy of RBF methods in an efficient manner. RBF methods using extended precision are compared to algorithms that evaluate RBF methods by bypassing the solution of the ill-conditioned linear systems.
منابع مشابه
Exploring Approximations for Floating-Point Arithmetic using UppSAT
We consider the problem of solving floating-point constraints obtained from software verification. We present UppSAT — an new implementation of a systematic approximation refinement framework [24] as an abstract SMT solver. Provided with an approximation and a decision procedure (implemented in an off-the-shelf SMT solver), UppSAT yields an approximating SMT solver. Additionally, UppSAT yieldsi...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملAccurate simple zeros of polynomials in floating point arithmetic
In the paper, we examine the local behavior of Newton’s method in floating point arithmetic for the computation of a simple zero of a polynomial assuming that an good initial approximation is available. We allow an extended precision (twice the working precision) in the computation of the residual. We prove that, for a sufficient number of iterations, the zero is as accurate as if computed in t...
متن کاملStable Computations with Gaussian Radial Basis Functions in 2-d
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...
متن کاملCAMPARY: Cuda Multiple Precision Arithmetic Library and Applications
Many scientific computing applications demand massive numerical computations on parallel architectures such as Graphics Processing Units (GPUs). Usually, either floating-point single or double precision arithmetic is used. Higher precision is generally not available in hardware, and software extended precision libraries are much slower and rarely supported on GPUs. We develop CAMPARY: a multipl...
متن کامل